

Using SAS® Macro Language to Develop User-Written Functions
Deb Pine, Thotwave Technologies, Cary, NC

ABSTRACT
SAS Macro Language is a powerful tool that can be used
to write macros that work very similar to SAS functions for
the most common repetitive tasks. For example, a macro
can be written that works just like a SAS function to return
a value from a key in a lookup table. This approach to
development paves the way for code reusability, an
internal toolbox, and code standardization.

INTRODUCTION
The purpose of this paper is to explain how to write user-
written functions using SAS Macro Language. The
audience should understand BASE SAS and the SAS
Macro Language.

WRITING THE FUNCTION
As developers we are constantly performing the same
type of task over and over. For repetitive tasks, a macro
can be used that returns a value to the calling program.

A SIMPLE FUNCTION
A task we can all relate to is retrieving the number of
observations in a data set. The function below retrieves
the number of observations and returns the value back to
the calling program.

The source code looks like this:

%macro obs(DATA);

%local DSID NUM_OBS RC;
%let DSID =-1;

%if %exist(&data) %then
 %let DSID = %sysfunc(open(&DATA, I));

%if &DSID <= 0 %then %do;
 %let NUM_OBS = .;

%put WARNING: Data set &DATA could
not be opened. Unable to
determine number of observations.;

%end;
%else %do;
 %let NUM_OBS = %sysfunc(attrn(&DSID,
NLOBS));
 %let RC = %sysfunc(close(&DSID));
%end;

&NUM_OBS

%mend obs;

The %obs macro works just like a SAS function in that in
returns a value. Using this type of logic there is no need
to explicitly assign a value to a macro variable and then
explicitly check the value of the macro variable in the
calling program.

In order for a user-written function to work properly the
last line of code in the macro must be the return value. In
%obs macro if any additional code or comments are put in
after the line “&NUM_OBS” the macro will cause an error.

This is what the function looks like when it is called:

%if %obs(&dsn) = 0 %then
 %put No observations in data set.;

The function can also be used as a parameter passed into
another macro call.

%errorcheck(%obs(&dsn),Unexpected number of
observations);

By creating a function to determine the number of
observations in a data set the developer has just saved
themselves 10+ lines of code. If you multiply that by 100
programs, the efficiency gain is clear.

A COMPLEX FUNCTION
This section takes a look at coding and using a more
complex function than the example above. The macro
below performs a routine task of a table lookup. This task
can also be accomplished using PROC FORMAT or KEY=
in a data step.

The macro below uses SAS Functions and call routines to
perform a lookup instead of PROC FORMAT so that it is
not affected when the underlying data changes. This
approach is also favorable over the key= solution, as that
requires the maintenance of an index.

%macro lookup(dsn=, n=);

%local rc DSID label table;
%let dsid =
%sysfunc(open(&dsn.(where=(N=&n.))));
%if &dsid >0 %then %do;
 %let rc = %sysfunc(fetch(&dsid));
 %let label =
%sysfunc(getvarc(&dsid,%sysfunc(varnum(&dsi
d,label))));
 %let rc = %sysfunc(close(&dsid));
 %end;
%if &label = %str() %then %let label
=unknown;

&label

%mend lookup;

The macro %lookup opens the data set passed in as the
parameter dsn and looks up the value for the variable
label based on n.

Here is the data set used as a lookup table:

data fruit;
 input N label $;
 cards;
apple 1
banana 2
cherry 3
;
run;

This is what the function looks like when it is called:

%put The lookup return value is
%lookup(data=fruit,n=1));

In this example, this statement will return the value
“apple”.

CONCLUSION
User-written functions are a powerful tool for the SAS
developer. An internal toolkit can be developed and
matured over time saving the developer countless number
of hours on repetitive tasks.

CONTACT INFORMATION
Your comments and questions are valued and
encouraged. Contact the author at:

Deb Pine
 Thotwave Technologies
 2054 Kildaire Farm Rd. #322
 Cary, NC 27511
 Work Phone: 1.800.584.2819
 Fax: 1.800.584.2819
 Email:dpine@thotwave.com
 Web:www.thotwave.com

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are trademarks of their
respective companies.

